Fitness for Service – Alternatives for equipment validation

Boiler and pressure equipment manufacturers face everyday strict design and manufacturing requirements to supply heat exchangers, pressure vessels or process equipment.

The recognized international design and manufacturing codes that are prescribed for this type of equipment (ASME VIII Div. 1 & 2, EN13445, AD2000, etc.) specify those tests, trials, inspections and quality controls to be complied in order to obtain the corresponding stamp or certificate, as mandatory requirement of the end user.

Generally, such equipment favorably comply with the controls and are eligible to achieve the corresponding stamp or certification. However, sometimes and due to multiple factors, equipment might show some type of defect or imperfection: ovalization, out-of-roundness, buckling defects, loss of thickness and/or weld misalignments, among others.

Such defects might cause a non-compliance with the requirements for equipment validation set up by the applicable design code and / or exceed the allowable manufacturing tolerances. What would happen then?

Up to date, equipment manufacturers had to assume design, manufacturing and/or assembly errors at their own cost (replacing, repairing or re-manufacturing in worst-case scenario)

Besides the significant additional costs to be committed by the manufacturer, it should also be considered as critical, the impact on the global schedule of the project, in terms of additional time to repair or re-manufacture.

Alternatives for equipment validation

Aware of this manufacturer’s critical concern, at CADE we provide powerful alternatives to the conventional design codes, by means of the application of innovative methods and engineering tools when facing such an issue. Said methods allow us to validate fitness for equipment’s service even when detected defects or imperfections are out of code’s allowable tolerances.

To that end, we usually combine finite element simulation tools (FEA) with the application of recognized engineering codes and standards, such as código API 579/ASME FFS-1 (Fitness for Service).

According to the inspection survey, detected defect or defects are implemented in the simulation in order to assess the actual behavior of the item under evaluation. Thereby, it is possible to determine whether the defect is critical or has no influence on its service, in which case an engineering assessment supported by code becomes mandatory.

Our goal is to provide manufacturers with an alternative tool for the validation of defective equipment, not necessarily implying a design modification and / or replacement of defective components, thereby avoiding additional costs or time.

Example:

Fitness for Service assessment of tank presenting ovalization defects out of tolerance

Further information:

For any question or further information request about our methodology for equipment validation, please complete the following form:

Introducción, clasificación y diseño de intercambiadores de calor tipo TEMA

Introducción, clasificación y diseño de intercambiadores de calor tipo TEMA

TEMA es el conjunto de normas y estándares más habitual empleado por diseñadores, fabricantes y usuarios para la fabricación y el diseño de intercambiadores de calor.

Brief introduction to TEMA HEAT EXCHANGERS design and selection

Brief introduction to TEMA HEAT EXCHANGERS design and selection

TEMA Standards are worldwide accepted as the authority on shell and tube heat exchangers design and manufacturing. These standards are the most commonly used in a wide range of industries throughout the world: refineries, oil and gas, power generation, etc.

PV Structures: beyond structural design

PV Structures: beyond structural design

The relevance of solar structures is growing in the investment of PV solar plants due to many factors related to the PV market evolution: tendency towards multi-Megawatt plants, global increased of the competition and new emerging markets, and overall drastic drop of prices on solar panels.  

Estructuras fotovoltaicas: más allá del diseño estructural

Estructuras fotovoltaicas: más allá del diseño estructural

Los costes de fabricación, montaje y mantenimiento de estructuras fotovoltaicas tienen hoy un peso fundamental en la inversión total de una planta de generación solar fotovoltaica.

CADE at UCLM Engineering Thermodynamics Congress

CADE at UCLM Engineering Thermodynamics Congress

More than 160 experts meet at this Congress in Spain to improve teaching and researching techniques at different fields in which Engineering Thermodynamics plays an important role.​

Structural simulation of railway rolling stock using finite element method analysis

Structural simulation of railway rolling stock using finite element method analysis

ADVANTAGES OF INCORPORATING THE SUSPENSION SYSTEM TO THE FINITE ELEMENT MODEL​

1 2 3 4